4 May 2017



# Further significant results from infill drilling at Kebigada, Giro Gold Project

### Kebigada

- Results reported for a further 2 diamond holes and 9 RC holes at Kebigada
- Best results include:
  - GRRC220: 28m at 2.09g/t Au from 47m including 13m at 2.83g/t Au from 52m
  - GRRC222: 17.8m at 2.17g/t Au from 49m including **5m at 4.42g/t Au** from 57m
  - GRRC225: 62m at 1.75g/t Au from 31m including 6m at 2.42g/t Au from 35m
  - GRRC227: 19m at 1.78g/t Au from 6m including 5m at 3.54g/t Au from 8m
  - GRRC228: 105m at 1.37g/t Au from 5m including 7m at 3.43g/t Au from 54m
- Infill drilling programme to be completed in early May
- Kebigada maiden resource expected before end of Q2
- Results for a further 8 RC and 2 diamond holes to be reported within 3 weeks completion of infill drilling and all results expected in late May
- Following completion of the infill drilling programme Amani will commence an RC drilling program to follow up on high-grade soil anomalies in the immediate surrounds at Kebigada. Significant new discoveries will be followed up with further drilling to delineate potential satellite resources which could add materially to the Kebigada resource

Amani Gold Limited (ASX: ANL) ("Amani") reports results for a further two diamond holes for 632.5m and nine RC holes for 1,134.8m from the infill drilling programme which commenced in mid-February 2017 at Kebigada on its Giro Gold Project in the Moto Greenstone Belt, NE Democratic Republic of Congo ("DRC"). Two priority RC drill holes and one diamond hole remain to be drilled from the infill programme. Diamond drill hole GRDD001 will be deepened as the original hole was stopped short according to the current geological model. All outstanding samples will be submitted to the laboratory during the week to ensure all results are reported in time for inclusion in the maiden mineral resource estimate planned for release in June.

Chairman Klaus Eckhof stated: "We are coming to the end of the infill programme undertaken for the purposes of estimating a maiden resource at Kebigada. The consistently strong results to date, including a few exceptional results reported throughout the infill programme, strengthen our belief that Kebigada has potential to host significant mineable gold resources at a good grade.

The infill drilling has certainly highlighted the occurrence of a number of high-grade zones of mineralisation throughout the mineralised lode and has enabled our field crews to better understand the orientation of these zones which we expect to be reflected in our maiden resource estimate expected in June. The infill drilling further highlighted the potential for these high-grade zones of mineralisation to continue to depth which could eventually yield a substantial underground project with continued deeper drilling."

Amani Gold Limited ABN 14 113 517 203 www.amanigold.com PO Box 281 Mount Hawthorn WA 6915 Australia Level2 Suite9, 389 Oxford Street Mount Hawthorn WA 6016 Australia

P +61 8 9381 2299 F +61 8 9380 6761 info@amanigold.com



#### Kebigada

Results are reported for a further two diamond holes and nine RC infill holes at Kebigada as shown in Figure 1. All results are summarised in Table 1 and shown in Figures 1-4.

Diamond drill hole GRDD020 reported a high-grade intercept of **1m at 89.2g/t Au** while significant RC drill hole results included:

- GRRC220: 28m at 2.09g/t Au from 47m including 13m at 2.83g/t Au from 52m (Line 500)
- GRRC222: 17.8m at 2.17g/t Au from 49m including **5m at 4.42g/t Au** from 57m (Line 750) hole abandoned at 66.8m
- GRRC225: 62m 1.75g/t Au from 31m including 6m at 2.42g/t Au (Line 750)
- GRRC227: 19m at 1.78g/t Au from 6m including 5m at 3.54g/t Au from 8m (Line 350)
- GRRC228: 105m at 1.37g/t Au from 5m including **7m at 3.43g/t Au** from 54m (Line 850)

Holes GRRC222 and GRC225 targeted the main central zone of mineralisation but both were abandoned at shallow depths due to difficult ground conditions and the risk of losing the rod string. Results warrant follow-up with diamond drilling at depth and to establish the true width and grade of mineralisation.

GRRC228 targeted the eastern zone of fractured intrusive with pyrite stringers and was mineralised over 105m from surface. The hole had to be stopped short in mineralisation, again due to the risk of losing the rods.

The planned RC infill drill programme of 3,500m was extended to include a number of contingency holes which were drilled as follow-up to holes which reported significant mineralisation. To date Amani has reported results for 29 RC drill holes for a total of 3,628m and 9 diamond drill holes for 2,384m from the planned 3,500m programme.

Both the planned diamond and RC drilling programmes will be completed shortly to ensure that all samples are submitted to the laboratory in time to allow for the completion of a maiden mineral resource estimate in June. An additional diamond hole will be drilled on Line 1200N to test continuity of mineralisation at depth supporting a northerly plunging high grade chute for potential underground mining operations. One diamond hole has also been planned to test mineralisation along strike to current drilling at the Giro Vein prospect.

Amani will now revise the planned 3,500m shallow scout RC drilling program to follow up on high-grade soil anomalies in the immediate surrounds at Kebigada. Drilling is expected to commence once the drill rig has been serviced following the completion of the infill drilling programme. Significant new discoveries will be followed up with further drilling to delineate potential satellite resources which could add materially to the Kebigada resource.



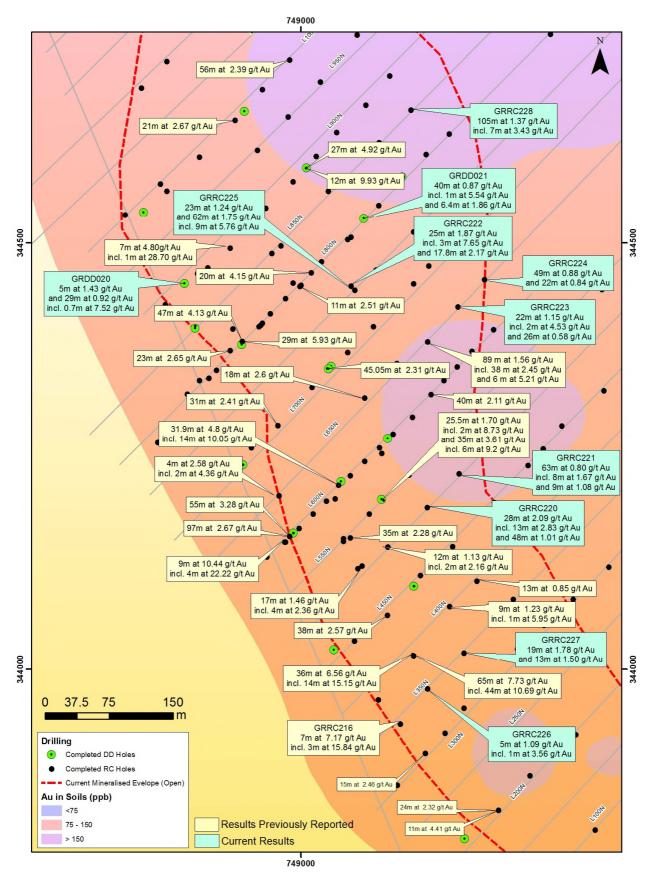



Figure 1: RC drill hole locations and significant mineralised intercepts at Kebigada.



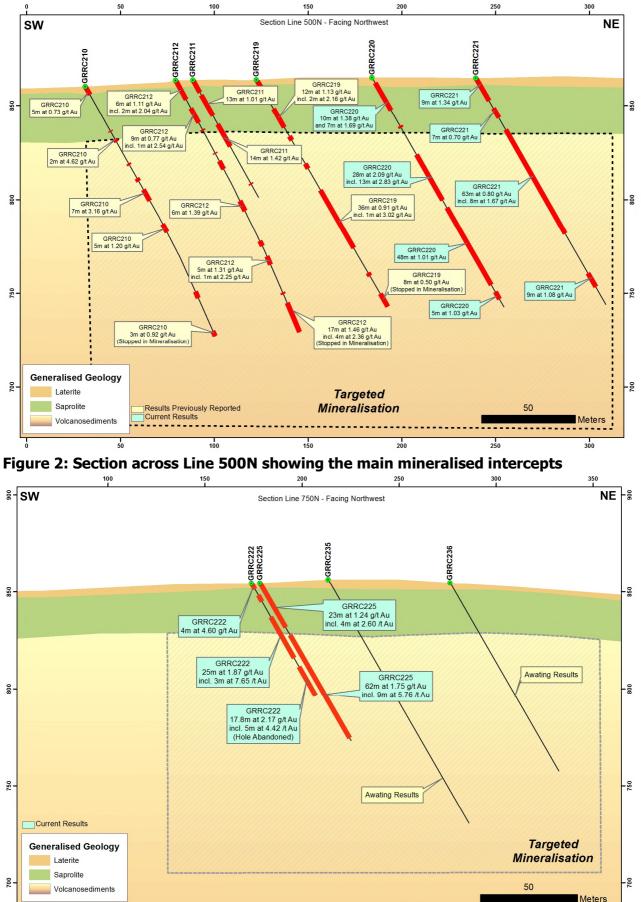



Figure 3: Section across Line 750N showing the main mineralised intercepts



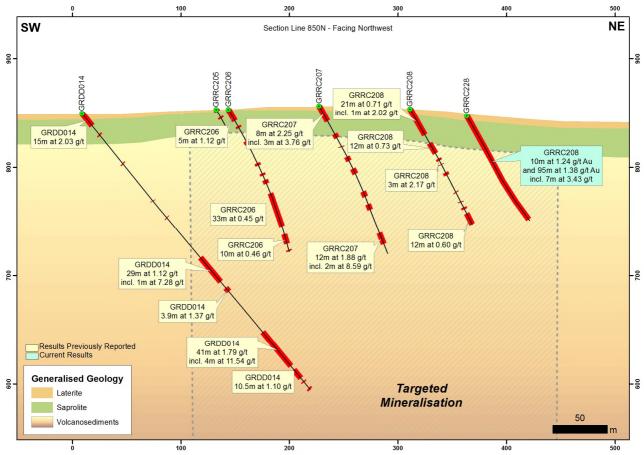



Figure 4: Section across Line 850N showing the main mineralised intercepts

 Table 1: Summary of infill RC drill holes and significant intersections received at Kebigada

 Shear Zone on the Giro Gold Project, DRC

| Hole ID | Easting | Northing | RL  | Azimuth | Dip | EOH<br>(m) | From<br>(m) | To<br>(m) | Interval<br>(m) | Grade<br>g/t Au   |
|---------|---------|----------|-----|---------|-----|------------|-------------|-----------|-----------------|-------------------|
| GRDD020 | 748863  | 344453   | 848 | 43      | -60 | 330        | 0           | 3         | 3               | 0.67 <sup>1</sup> |
|         |         |          |     |         |     |            | 4           | 7         | 3               | 0.63              |
|         |         |          |     |         |     |            | 15          | 16        | 1               | 0.52              |
|         |         |          |     |         |     |            | 80          | 82.1      | 2.1             | 0.79              |
|         |         |          |     |         |     |            | 91          | 91.4      | 0.4             | 0.83              |
|         |         |          |     |         |     |            | 123         | 125       | 2               | 0.73              |
|         |         |          |     |         |     |            | 130         | 131       | 1               | 0.54              |
|         |         |          |     |         |     |            | 136         | 137       | 1               | 0.66              |
|         |         |          |     |         |     |            | 142         | 144       | 2               | 44.92             |
|         |         |          |     |         |     | incl.      | 142         | 143       | 1               | 89.20             |
|         |         |          |     |         |     |            | 151         | 152       | 1               | 0.68              |
|         |         |          |     |         |     |            | 158         | 161       | 3               | 5.63              |
|         |         |          |     |         |     | incl.      | 158         | 159       | 1               | 14.40             |



| Hole ID | Easting | Northing | RL  | Azimuth | Dip | EOH<br>(m) | From<br>(m) | To (m) | Interval<br>(m) | Grade<br>g/t Au   |
|---------|---------|----------|-----|---------|-----|------------|-------------|--------|-----------------|-------------------|
|         |         |          |     |         |     |            | 165.8       | 171    | 5.2             | 1.43              |
|         |         |          |     |         |     | incl.      | 169         | 170    | 1               | 3.17              |
|         |         |          |     |         |     |            | 178.5       | 186    | 7.5             | 1.39              |
|         |         |          |     |         |     | incl.      | 178.5       | 181.3  | 2.8             | 1.72              |
|         |         |          |     |         |     |            | 191         | 203    | 12              | 1.22              |
|         |         |          |     |         |     | incl.      | 191         | 192    | 1               | 5.23              |
|         |         |          |     |         |     |            | 211         | 213    | 2               | 1.45              |
|         |         |          |     |         |     |            | 218         | 241    | 23              | 0.96              |
|         |         |          |     |         |     | incl.      | 218         | 219    | 1               | 3.59              |
|         |         |          |     |         |     |            | 272.5       | 273    | 0.5             | 0.54              |
|         |         |          |     |         |     |            | 282         | 285    | 3               | 2.34              |
|         |         |          |     |         |     | incl.      | 282         | 284    | 2               | 3.25              |
|         |         |          |     |         |     |            | 289         | 318    | 29              | 0.92              |
|         |         |          |     |         |     | incl.      | 292.5       | 293.2  | 0.7             | 7.52              |
|         |         |          |     |         |     |            | 322         | 326    | 4               | 0.49              |
| GRDD021 | 749074  | 344529   | 858 | 43      | -60 | 302.5      | 0           | 2.2    | 2.2             | 1.48 <sup>1</sup> |
|         |         |          |     | -       |     |            | 2.2         | 11     | 8.8             | 0.78              |
|         |         |          |     |         |     |            | 15          | 55     | 40              | 0.87              |
|         |         |          |     |         |     | incl.      | 37          | 38     | 1               | 5.54              |
|         |         |          |     |         |     |            | 60          | 62     | 2               | 0.67              |
|         |         |          |     |         |     |            | 66.6        | 73     | 6.4             | 1.86              |
|         |         |          |     |         |     | incl.      | 71          | 72     | 1               | 6.99              |
|         |         |          |     |         |     |            | 80.5        | 81.2   | 0.7             | 0.84              |
|         |         |          |     |         |     |            | 95.5        | 97     | 1.5             | 0.62              |
|         |         |          |     |         |     |            | 101         | 104.5  | 3.5             | 0.45              |
|         |         |          |     |         |     |            | 114         | 115    | 1               | 0.59              |
|         |         |          |     |         |     |            | 125         | 127    | 2               | 0.49              |
|         |         |          |     |         |     |            | 141         | 143    | 2               | 0.63              |
|         |         |          |     |         |     |            | 196.4       | 197    | 0.6             | 0.89              |
|         |         |          |     |         |     |            | 205         | 207    | 2               | 0.79              |
|         |         |          |     |         |     |            | 214         | 220    | 6               | 0.76              |
|         |         |          |     |         |     |            | 232         | 253    | 21              | 0.76              |
|         |         |          |     |         |     | incl.      | 236.5       | 237.5  | 1               | 2.44              |
|         |         |          |     |         |     |            | 268         | 271    | 3               | 0.51              |
|         |         |          |     |         |     |            | 278.5       | 279.2  | 0.7             | 0.50              |
|         |         |          |     |         |     |            | 282.5       | 283    | 0.5             | 0.60              |
|         |         |          |     |         |     |            | 289         | 291    | 2               | 0.78              |
|         |         |          |     |         |     |            | 296         | 297    | 1               | 1.13              |
| GRRC220 | 749148  | 344189   | 858 | 43      | -60 | 141        | 0           | 1      | 1               | 0.52 <sup>1</sup> |
|         |         |          |     |         |     |            | 3           | 10     | 7               | 1.69 <sup>1</sup> |
|         |         |          |     |         |     | incl.      | 4           | 6      | 2               | 2.37 <sup>1</sup> |
|         |         |          |     |         |     |            | 10          | 20     | 10              | 1.38              |
|         |         |          |     |         |     | incl.      | 10          | 13     | 3               | 3.21              |



| Hole ID | Easting | Northing | RL  | Azimuth | Dip | EOH<br>(m) | From<br>(m) | To (m) | Interval<br>(m) | Grade<br>g/t Au   |
|---------|---------|----------|-----|---------|-----|------------|-------------|--------|-----------------|-------------------|
|         |         |          |     |         |     |            | 30          | 31     | 1               | 0.55              |
|         |         |          |     |         |     |            | 47          | 75     | 28              | 2.09              |
|         |         |          |     |         |     | incl.      | 52          | 65     | 13              | 2.83              |
|         |         |          |     |         |     | incl.      | 69          | 73     | 4               | 2.86              |
|         |         |          |     |         |     |            | 79          | 127    | 48              | 1.01              |
|         |         |          |     |         |     | incl.      | 91          | 94     | 3               | 2.17              |
|         |         |          |     |         |     |            | 131         | 136    | 5               | 1.03              |
| GRRC221 | 749185  | 344229   | 858 | 43      | -60 | 139        | 0           | 9      | 9               | 1.34 <sup>1</sup> |
|         |         |          |     |         |     | incl.      | 3           | 5      | 2               | 3.18 <sup>1</sup> |
|         |         |          |     |         |     |            | 9           | 14     | 5               | 0.46              |
|         |         |          |     |         |     |            | 18          | 25     | 7               | 0.70              |
|         |         |          |     |         |     |            | 32          | 95     | 63              | 0.80              |
|         |         |          |     |         |     | incl.      | 32          | 40     | 8               | 1.67              |
|         |         |          |     |         |     |            | 119         | 128    | 9               | 1.08              |
|         |         |          |     |         |     | incl.      | 124         | 125    | 1               | 2.89              |
| GRRC222 | 749059  | 344450   | 855 | 43      | -60 | 66.8       | 0           | 4      | 4               | 4.60 <sup>1</sup> |
|         |         |          |     |         |     |            | 7           | 11     | 4               | 1.03 <sup>2</sup> |
|         |         |          |     |         |     |            | 20          | 45     | 25              | 1.87              |
|         |         |          |     |         |     | incl.      | 30          | 33     | 3               | 7.65              |
|         |         |          |     |         |     |            | 49          | 66.8   | 17.8            | 2.17 <sup>3</sup> |
|         |         |          |     |         |     | incl.      | 57          | 62     | 5               | 4.42              |
| GRRC223 | 749184  | 344425   | 855 | 43      | -60 | 143        | 0           | 7      | 7               | 2.61 <sup>1</sup> |
|         |         |          |     |         |     | incl.      | 0           | 5      | 5               | 3.24 <sup>1</sup> |
|         |         |          |     |         |     |            | 7           | 17     | 10              | 0.82              |
|         |         |          |     |         |     |            | 46          | 68     | 22              | 1.15              |
|         |         |          |     |         |     | incl.      | 48          | 50     | 2               | 4.53              |
|         |         |          |     |         |     |            | 77          | 78     | 1               | 0.59              |
|         |         |          |     |         |     |            | 87          | 90     | 3               | 0.55              |
|         |         |          |     |         |     |            | 96          | 110    | 14              | 0.45              |
|         |         |          |     |         |     |            | 117         | 143    | 26              | 0.58 <sup>3</sup> |
| GRRC224 | 749215  | 344457   | 852 | 43      | -60 | 139        | 0           | 1      | 1               | 1.98 <sup>1</sup> |
|         |         |          |     | -       |     |            | 1           | 9      | 8               | 0.69              |
|         |         |          |     |         |     |            | 19          | 68     | 49              | 0.88              |
|         |         |          |     |         |     | incl.      | 40          | 41     | 1               | 2.8               |
|         |         |          |     |         |     |            | 73          | 95     | 22              | 0.84              |
|         |         |          |     |         |     |            | 99          | 102    | 3               | 0.53              |
|         |         |          |     |         |     |            | 107         | 113    | 6               | 1.03              |
|         |         |          |     |         | 1   | incl.      | 108         | 109    | 1               | 2.98              |
|         |         |          |     |         | 1   |            | 118         | 119    | 1               | 0.51              |
| GRRC225 | 749063  | 344445   | 855 | 43      | -60 | 94         | 0           | 4      | 4               | 1.32 <sup>1</sup> |
| 5       |         |          |     | .0      |     |            | 4           | 27     | 23              | 1.24              |
|         |         |          |     |         |     | incl.      | 16          | 20     | 4               | 2.6               |
|         |         |          |     |         |     |            | 31          | 93     | 62              | 1.75 <sup>3</sup> |



|         |         |          |     |         |     | EOH   | From | _ / >  | Interval | Grade             |
|---------|---------|----------|-----|---------|-----|-------|------|--------|----------|-------------------|
| Hole ID | Easting | Northing | RL  | Azimuth | Dip | (m)   | (m)  | To (m) | (m)      | g/t Au            |
|         |         |          |     |         |     | incl. | 35   | 41     | 6        | 2.42              |
|         |         |          |     |         |     | incl. | 65   | 74     | 9        | 5.76              |
| GRRC226 | 749149  | 343977   | 856 | 43      | -60 | 150   | 1    | 5      | 4        | 0.73 <sup>1</sup> |
|         |         |          |     |         |     |       | 39   | 41     | 2        | 2.35              |
|         |         |          |     |         |     |       | 86   | 91     | 5        | 1.09              |
|         |         |          |     |         |     | incl. | 90   | 91     | 1        | 3.56              |
|         |         |          |     |         |     |       | 103  | 112    | 9        | 0.61              |
| GRRC227 | 749191  | 344019   | 859 | 43      | -60 | 150   | 0    | 6      | 6        | 0.76 <sup>1</sup> |
|         |         |          |     |         |     |       | 6    | 25     | 19       | 1.78              |
|         |         |          |     |         |     |       | 8    | 13     | 5        | 3.54              |
|         |         |          |     |         |     |       | 29   | 42     | 13       | 1.5               |
|         |         |          |     |         |     | incl. | 39   | 41     | 2        | 3.26              |
|         |         |          |     |         |     |       | 51   | 52     | 1        | 0.73              |
|         |         |          |     |         |     |       | 57   | 59     | 2        | 0.55              |
|         |         |          |     |         |     |       | 65   | 70     | 5        | 0.39              |
|         |         |          |     |         |     |       | 78   | 82     | 4        | 1.67              |
|         |         |          |     |         |     | incl. | 79   | 80     | 1        | 3.17              |
|         |         |          |     |         |     |       | 113  | 122    | 9        | 0.73              |
|         |         |          |     |         |     | incl. | 113  | 114    | 1        | 2.76              |
|         |         |          |     |         |     |       | 135  | 136    | 1        | 3.34              |
|         |         |          |     |         |     |       | 148  | 149    | 1        | 1.08              |
| GRRC228 | 749129  | 344656   | 848 | 43      | -60 | 112   | 1    | 5      | 4        | 0.94 <sup>1</sup> |
|         |         |          |     |         |     |       | 5    | 15     | 10       | 1.24 <sup>2</sup> |
|         |         |          |     |         |     |       | 16   | 111    | 95       | 1.38 <sup>3</sup> |
|         |         |          |     |         |     | incl. | 30   | 34     | 4        | 2.09              |
|         |         |          |     |         |     | incl. | 40   | 44     | 4        | 3.32              |
|         |         |          |     |         |     | incl. | 54   | 61     | 7        | 3.43              |

<sup>1</sup> - Laterite Intersections

<sup>2</sup> - Cavity Intersected

<sup>3</sup> - Hole Stopped in Mineralisation

NSR - No Significant Results

A cut-off grade of 0.5g/t Au was used with a maximum dilution of 3m within each intercept

#### **Project Background and Potential – Giro**

The Giro Gold Project comprises two exploitation permits covering a surface area of 497km<sup>2</sup> and lies within the Kilo-Moto Belt, a significant under-explored greenstone belt which hosts Randgold Resources' 17-million ounce Kibali group of deposits, lying within 30km of Giro. Kibali produced 585,946 ounces of gold in 2016 and is targeting production of 610,000 ounces for 2017, confirming a favourable mining environment in the region.

Historically, the Belgians mined high grade gold veins and laterite at Giro, Peteku, Douze Match, Mangote and Kai-Kai, all of which lie within an interpreted 30km structural corridor which transgresses both



licenses from the SE to the NW. Initial focus was at Giro where Amani's exploration was concentrated on drilling and geochemical sampling in the area mined historically during Belgian rule and in areas currently being mined by artisanal means. Drilling under Amani's >200ppb gold-in-soil anomaly which extends over 2,000m x 900m, defined a significant zone of mineralisation over 1,400m x 400m which is open at depths exceeding 150m. Highly significant diamond and RC drilling results included 97m at 2.56g/t Au from surface, 47m at 4.13g/t Au from 25m, incl. 29m at 5.93g/t Au from 25m and 38.1m at 2.53g/t Au from 191m including 30.6m at 3.00g/t Au from 198.5m. The Giro Prospect is cross-cut by numerous high-grade ENE-trending structures currently mined by artisanal miners and identified in the diamond drilling. One such vein at Peteku reported 4m at 21.7g/t Au.

The Company has completed soil sampling programmes for complete coverage of the corridor and is in process of sampling the remaining areas of both licences for new discovery or to assist with identifying areas to be dropped off to reduce licence fees. Highly significant soil anomalies were defined at Douze Match and Adoku where shallow scout drilling at Douze Match returned exceptional results of 2m at 196g/t Au from 12m and 15m at 255.6g/t Au from 15m, including 3m at 1,260g/t Au from 15m. Mineralisation at Douze Match is more complicated than expected and the Amani is doing follow up work to better understand controls on mineralization.

To the north, Belgian colonials mined two deposits on PE 5049 up to the end of the colonial era in the 1960s. These were the Mangote open pit where historic drilling results included 0.6m at 37g/t Au and 0.35m at 485g/t Au and the Kai-Kai underground workings. There is no record of methods used to obtain these results. Only quartz veins were sampled historically by the Belgians although recent diamond drilling reported a best intersection of 8.91m at 3.09g/t Au from 78.05m confirming potential for a broader zone of mineralisation surrounding high grade quartz veins. Both deposits are associated with a 1km long soil anomaly.

For more information contact: Klaus Eckhof Chairman Tel: +377 680 866 300 klauseckhof@monaco.mc

Peter Taylor Investor Relations Tel: +61 (0)412 036 231 peter@nwrcommunications.com.au

Or visit www.amanigold.com

#### **Competent Person's Statement – Exploration Results**

The information in this report that relates to exploration results is based on, and fairly represents information and supporting documentation prepared by Mr Klaus Eckhof, a Competent Person who is a member of The Australasian Institute of Mining and Metallurgy. Mr Eckhof is a director of Amani Gold Limited. Mr Eckhof has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resource and Ore Reserves". Mr Eckhof consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to the Giro Gold Project, other than the new results the subject of this report, has been previously reported by the Company in compliance with JORC 2012 in various market releases, with the last one being dated 10 April 2017. The Company confirms that it is not aware of any new information or data that materially affects the information included in those earlier market announcements.



# Appendix A

## JORC Code, 2012 Edition – Table 1 report Kebigada Prospect Section 1 Sampling Techniques and Data

| CRITERIA               | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <b>RC - Kebigada</b><br>Reverse circulation drilling was used<br>to obtain a 2kg sample for every 1m<br>drilled which was sent to SGS<br>accredited laboratory in Mwanza.<br>Samples were homogenised 3 times<br>before splitting off the 2kg sample.<br>Sampling was carried out under strict<br>QAQC procedures as per industry<br>standards where certified reference<br>materials (CRMs) of varying grades,<br>blank samples and field duplicates are<br>each inserted at a rate of 1 in 30 so<br>that every 10th sample is a quality<br>control sample. The samples were<br>then prepared to produce a 50g<br>subsample from each 2kg sample for<br>fire assay with AA finish in an<br>accredited laboratory.<br><b>Diamond – Kebigada</b><br>Sampling of diamond core was carried<br>out under strict QAQC procedures as<br>per industry standards where certified<br>reference materials (CRMs) of varying<br>grades, blank samples and field<br>duplicates are each inserted at a rate<br>of 1 in 30 so that every 10th sample<br>is a quality control sample. Sampling<br>was carried out according to<br>lithological/structural boundaries<br>having a minimum sample width of<br>40cm and a maximum s |
| Drilling<br>techniques | • Drill type (eg core, reverse circulation,<br>open-hole hammer, rotary air blast,<br>auger, Bangka, sonic, etc) and details (eg<br>core diameter, triple or standard tube,<br>depth of diamond tails, face-sampling bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>RC – Kebigada</b><br>Reverse circulation drilling of holes<br>with an 11.1cm diameter hammer was<br>employed to drill oriented holes. The<br>holes were oriented with a compass.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



| CRITERIA     | JORC Code Explanation                                                                                                                                                                                                                                                                                                                               | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | or other type, whether core is oriented and if so, by what method, etc).                                                                                                                                                                                                                                                                            | Downhole surveys were carried out every 30m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                     | Diamond — Kebigada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |                                                                                                                                                                                                                                                                                                                                                     | HQ core drilling down to fresh rock<br>after which the hole was cased off<br>before changing to NQ. A triple tube<br>core barrel was used in the weathered<br>profile after which a standard or<br>double tube core barrel was used to<br>ensure maximum core recovery. The<br>holes were oriented with a compass,<br>and surveyed with a Reflex digital<br>survey single shot camera with a<br>survey recorded every 30m. Core was<br>orientated using a spear.                                                                                                                                                                                                                                                                            |
| Drill sample | • Method of recording and assessing core                                                                                                                                                                                                                                                                                                            | RC — Kebigada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| recovery     | <ul> <li>and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul> | All samples were weighed on site to<br>establish sample recoveries. Sample<br>recovery was recorded in the drill<br>logs, as well as sample loss. As poor<br>recovery affected a minority of the<br>samples, the poor recovery was not<br>taken into account while calculating<br>mineralised intervals. However,<br>intervals containing lateritic lithologies<br>were labelled as such (see drill results<br>Table 1). During drilling, cavities<br>resulting in significant sample loss<br>were encountered and recorded.                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                     | Diamond — Kebigada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |                                                                                                                                                                                                                                                                                                                                                     | All core is fitted and measured at the<br>drill site and core gains or recoveries<br>recorded against the driller's depths.<br>Sample recovery was recorded in the<br>drill logs, as well as sample loss. Core<br>recoveries were generally better than<br>80% in the weathered zone greater<br>than 95% in the intermediate and<br>fresh profile. In instances where<br>recoveries were consistently less than<br>80%, holes were re-drilled. Where<br>losses were noted in the saprolitic<br>interval sample widths were limited to<br>the width of the run with a maximum<br>of 1.5m which was the length of the<br>core barrel. As poor recovery affected<br>a minority of the samples, the poor<br>recovery was not taken into account |



| CRITERIA                                         | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                    | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                          | while calculating mineralised intervals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Logging                                          | • Whether core and chip samples have                                                                                                                                                                                                                                                                                                                                                                                     | RC — Kebigada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                                  | been geologically and geotechnically<br>logged to a level of detail to support<br>appropriate Mineral Resource estimation,<br>mining studies and metallurgical studies.<br>• Whether logging is qualitative or<br>quantitative in nature. Core (or costean,                                                                                                                                                              | Each metre of drill sample has been<br>logged, recording its lithology,<br>alteration, weathering, colour, grain<br>size, strength, mineralisation, quartz<br>veining and water content. The total<br>length of all drill holes was logged.                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                                                  | <ul><li>channel, etc) photography.</li><li>The total length and percentage of the</li></ul>                                                                                                                                                                                                                                                                                                                              | Diamond – Kebigada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                                                  | relevant intersections logged.                                                                                                                                                                                                                                                                                                                                                                                           | All core was logged geologically,<br>geotechnically and structurally at<br>industry standard levels. Core is<br>marked with metre marks every metre<br>and orientation and cut lines marked<br>on every hole according to a fixed<br>procedure. Logging is both qualitative<br>and quantitative with core<br>photographed for both wet and dry<br>sample before being split. The total<br>length of all drill holes was logged<br>recording lithology, alteration,<br>weathering, colour, grain size,<br>strength, mineralisation and quartz<br>veining. |  |  |  |  |
| Subsampling                                      | • If core, whether cut or sawn and                                                                                                                                                                                                                                                                                                                                                                                       | RC - Kebigada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| <i>techniques<br/>and sample<br/>preparation</i> | <ul> <li>whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube<br/>sampled, rotary split, etc and whether<br/>sampled wet or dry.</li> <li>For all sample types, the nature, quality<br/>and appropriateness of the sample<br/>preparation technique.</li> <li>Quality control procedures adopted for<br/>all sub-sampling stages to maximise<br/>representativity of samples.</li> </ul> | Each metre sample was thoroughly<br>homogenised by running the sample<br>through the splitter 3 times before<br>splitting off 2kg from each 1m sample,<br>a sample of roughly 2kg was bagged<br>in a clear plastic bag with pre-printed<br>sample ticket. Sampling was carried<br>out under strict QAQC procedures as<br>per industry standards where certified<br>reference materials (CRMs) of varying<br>grades, blank samples and field                                                                                                              |  |  |  |  |
|                                                  | <ul> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being</li> </ul>                                                                                                                                       | duplicates are each inserted at a rate<br>of 1 in 30 so that every 10th sample<br>is a quality control sample. The<br>sample bags containing 2kg of RC drill<br>sample were sent to the SGS<br>Laboratories in Tanzania in a sealed<br>vehicle.                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                                                  | <i>the grain size of the material being sampled.</i>                                                                                                                                                                                                                                                                                                                                                                     | The final sample was crushed to >70% of the sample passing as less than 2mm. 1000g of sample was split from the crushed sample and                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |



| CRITERIA | JORC Code Explanation | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                       | pulverised until 70% of the material<br>could pass a 75um sieve. From this, a<br>50g sample was obtained for fire<br>assay at SGS Laboratories in<br>Tanzania.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                       | Crushing and pulverising were subject<br>to regular quality control practices of<br>the laboratory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                       | Samples sizes are appropriate<br>considering the grain size of the<br>samples. However, in the case of<br>lateritic lithology, a nugget effect<br>could potentially occur. Intervals in<br>laterites will therefore be treated<br>separately in any resource<br>estimations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                       | Diamond – Kebigada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                       | The highly weathered saprolitic zone<br>was split using a bladed instrument.<br>As soon as core had sufficient<br>strength to withstand cutting using a<br>diamond saw the cutting method was<br>changed to the latter. All core was<br>halved with the same half selected for<br>sampling according to procedure.<br>Sampling was then conducted<br>according to geology or structure<br>generally having a maximum sample<br>width of 50cm for HQ core and 1m for<br>NQ core although there were<br>exceptions which were largely a result<br>of core losses. Half core samples were<br>then bagged in clear plastic bags with<br>pre-printed sample tickets. Sampling<br>was carried out under strict QAQC<br>procedures as per industry standards<br>where certified reference materials<br>(CRMs) of varying grades, blank<br>samples and field duplicates are each<br>inserted at a rate of 1 in 30 so that<br>every 10th sample is a quality control<br>sample. The samples bags containing<br>roughly 3-4kg of diamond core sample<br>were sent to the SGS Laboratories in<br>Tanzania. |
|          |                       | The final sample was crushed to >70% of the sample passing as less than 2mm. 1kg of sample was split                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



| CRITERIA                     | JORC Code Explanation                                                                                                                                                                                                                             | Comment                                                                                                                                                                                                                                                             |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              |                                                                                                                                                                                                                                                   | from the crushed sample and<br>pulverised until 70% of the material<br>could pass a 75um sieve. From this, a<br>50g sample was selected for fire assay<br>at SGS Laboratories.                                                                                      |
|                              |                                                                                                                                                                                                                                                   | Crushing and pulverising were subject<br>to regular quality control practices of<br>the laboratory.                                                                                                                                                                 |
|                              |                                                                                                                                                                                                                                                   | Sample sizes are appropriate<br>considering the grain size of the<br>samples. However, in the case of<br>lateritic lithology, a nugget effect is<br>likely to occur. Intervals in laterites<br>will therefore be treated separately in<br>any resource estimations. |
| Quality of assay             | • The nature, quality and appropriateness                                                                                                                                                                                                         | RC - Kebigada                                                                                                                                                                                                                                                       |
| data and<br>laboratory tests | of the assaying and laboratory procedures<br>used and whether the technique is<br>considered partial or total.                                                                                                                                    | The laboratory used 50g of sample<br>and analysed samples using Fire<br>Assay with an AA finish (accredited                                                                                                                                                         |
|                              | • For geophysical tools, spectrometers,<br>handheld XRF instruments, etc, the<br>parameters used in determining the<br>analysis including instrument make and<br>model, reading times, calibrations factors<br>applied and their derivation, etc. | method). This technique is considered<br>an appropriate method to evaluate<br>total gold content of the samples.<br>Where the Au grade is above the<br>100g/t detection limit, the sample is<br>re-assayed using Fire Assay                                         |
|                              | • Nature of quality control procedures<br>adopted (eg standards, blanks, duplicates,<br>external laboratory checks) and whether<br>acceptable levels of accuracy (ie lack of<br>bias) and precision have been established.                        | gravitational method (non-accredited<br>method). In addition to the<br>laboratory's internal QAQC procedure,<br>every 10th field sample comprised a<br>blank sample, duplicate or standard<br>sample.                                                               |
|                              |                                                                                                                                                                                                                                                   | In total, 1,272 samples were submitted for assay, including 55 QAQC samples:                                                                                                                                                                                        |
|                              |                                                                                                                                                                                                                                                   | - 41 certified standards with known gold content were inserted in the series. All return acceptable values.                                                                                                                                                         |
|                              |                                                                                                                                                                                                                                                   | - 42 blank samples were inserted in<br>the analytical series. All returned<br>acceptable values below 0.02 g/t.                                                                                                                                                     |
|                              |                                                                                                                                                                                                                                                   | - 54 duplicate samples were re-<br>assayed for gold. 8 samples fell out of<br>the 20% difference range with the<br>original sample. These failed<br>duplicates are generally of higher<br>grade and denotes moderate nugget<br>effect.                              |



| CRITERIA                 | JORC Code Explanation                                                                                                                                                                                     | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                                                                                                                                                                                                           | Diamond — Kebigada                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                          |                                                                                                                                                                                                           | The laboratory used 50g of sample<br>and analysed samples using Fire<br>Assay with an AA finish. This<br>technique is considered an<br>appropriate method to evaluate total<br>gold content of the samples. In<br>addition to the laboratory's internal<br>QC procedure, every 10th field sample<br>comprised a blank sample or standard<br>sample.                                                                                                                 |
|                          |                                                                                                                                                                                                           | <ul><li>773 samples were submitted which included 25 blanks and 26 standards</li><li>of the 26 standards, all returned acceptable values.</li></ul>                                                                                                                                                                                                                                                                                                                 |
|                          |                                                                                                                                                                                                           | <ul> <li>all 25 blank samples returned<br/>acceptable values below 0.02 g/t.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                             |
|                          |                                                                                                                                                                                                           | - 26 Duplicate drill core samples were<br>also submitted, of these only 2 fell out<br>of the 20% difference range with the<br>original sample.                                                                                                                                                                                                                                                                                                                      |
| Verification of          | The verification of significant intersection                                                                                                                                                              | RC — Kebigada                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| sampling and<br>assaying | by either independent or alternative<br>company personnel.<br>• The use of twinned holes.<br>• Documentation of primary data, data                                                                        | Log and sampling data was entered<br>into spreadsheets, and then checked<br>for inconsistencies and stored in an<br>Access database.                                                                                                                                                                                                                                                                                                                                |
|                          | <ul> <li>Documentation of primary data, data<br/>entry procedures, data verification, data<br/>storage (physical and electronic)<br/>protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul> | Holes are logged by hand on printed<br>log sheets. Logging is done according<br>to standardised header, lithological<br>and structural information. Data is<br>then input into EXCEL spreadsheets<br>which are then emailed to the<br>database manager for input into<br>Access. Data is then interrogated and<br>all discrepancies are communicated<br>and resolved with field teams to<br>ensure only properly verified data is<br>stored in the Access database. |
|                          |                                                                                                                                                                                                           | Diamond – Kebigada                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                          |                                                                                                                                                                                                           | Log and sampling data was entered<br>into spreadsheets, and then checked<br>by the Exploration Manager for<br>inconsistencies and stored in an<br>Access database.                                                                                                                                                                                                                                                                                                  |
|                          |                                                                                                                                                                                                           | No holes were twinned.                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                          |                                                                                                                                                                                                           | Holes are logged by hand on printed log sheets. Logging is done according                                                                                                                                                                                                                                                                                                                                                                                           |



| CRITERIA                                                | JORC Code Explanation                                                                                                                                                                                                                                                                              | Comment                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                         |                                                                                                                                                                                                                                                                                                    | to standardised header, lithological<br>and structural information. Data is<br>then input into EXCEL spreadsheets<br>which are then emailed to the<br>database manager for input into<br>Access. Data is then interrogated and<br>all discrepancies are communicated<br>and resolved with field teams to<br>ensure only properly verified data is<br>stored in the Access database. |  |  |
| Location of                                             | Accuracy and quality of surveys used to                                                                                                                                                                                                                                                            | Drill hole collars were recorded with a                                                                                                                                                                                                                                                                                                                                             |  |  |
| data points                                             | <ul> <li>locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic</li> </ul>                                               | Garmin handheld GPS with less than<br>10m accuracy. Hole positions are<br>marked using tape and compass<br>reducing relative error to less than<br>1metre along each drill line. The holes<br>will be surveyed using a DGPS with<br>centimetre accuracy. Coordinates are                                                                                                            |  |  |
|                                                         | control.                                                                                                                                                                                                                                                                                           | reported in the WGS84-UTM35N Grid system.                                                                                                                                                                                                                                                                                                                                           |  |  |
| Data spacing                                            | Data spacing for reporting of      Symposition Results                                                                                                                                                                                                                                             | RC - Kebigada                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| and distribution                                        | <ul> <li>Exploration Results.</li> <li>Whether the data spacing and<br/>distribution is sufficient to establish the<br/>degree of geological and grade continuity<br/>appropriate for the Mineral Resource and<br/>Ore Reserve estimation procedure(s) and<br/>classifications applied.</li> </ul> | The program is considered to be<br>"infill" drilling between the 100 - 200n<br>spaced existing drill lines. This<br>additional drilling will reduce the dril<br>lines spacing to between 50 - 100m<br>for possible resource estimation. The<br>average depth of the RC holes is 130n                                                                                                |  |  |
|                                                         | • Whether sample compositing has been                                                                                                                                                                                                                                                              | Diamond - Kebigada                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                                         | applied.                                                                                                                                                                                                                                                                                           | The diamond drilling program is<br>designed to delineate the down-dip<br>extensions of the mineralised zones.<br>It is envisaged to drill at least one to<br>two diamond hole per section                                                                                                                                                                                           |  |  |
| Orientation of                                          | • Whether the orientation of sampling                                                                                                                                                                                                                                                              | RC and Diamond - Kebigada                                                                                                                                                                                                                                                                                                                                                           |  |  |
| <i>data in relation<br/>to geological<br/>structure</i> | achieves unbiased sampling of possible<br>structures and the extent to which this is<br>known, considering the deposit type.                                                                                                                                                                       | Drill holes were oriented<br>perpendicularly to the interpreted<br>strike of the mineralised zone already                                                                                                                                                                                                                                                                           |  |  |
|                                                         | • If the relationship between the drilling<br>orientation and the orientation of key<br>mineralised structures is considered to<br>have introduced a sampling bias, this<br>should be assessed and reported if<br>material.                                                                        | drill delineated by the first phase of drilling.                                                                                                                                                                                                                                                                                                                                    |  |  |
| Sample security                                         | • The measures taken to ensure sample security                                                                                                                                                                                                                                                     | Samples were collected under strict<br>supervision of the Senior Exploration<br>Geologist. Bagged samples were then                                                                                                                                                                                                                                                                 |  |  |



| CRITERIA             | JORC Code Explanation                                                  | Comment                                                                                                                                                                                                                                                                                                      |
|----------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                                                                        | labelled and sealed and stored on site<br>in a locked dwelling for transport to<br>the laboratory. Samples were<br>transported to the laboratory in a<br>sealed vehicle under supervision of a<br>contracted logistics company.                                                                              |
| Audits or<br>reviews | • The results of any audits or reviews of sampling techniques and data | The Company's sampling techniques<br>and data were reviewed and audited<br>by MSA's resource geologist. All<br>sampling techniques and procedures<br>for data capture were deemed to be<br>of industry standard and satisfactory,<br>being supervised by the Company's<br>senior and experienced geologists. |

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

| CRITERIA                                                   | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Comment                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Mineral<br/>tenement and<br/>land tenure<br/>status</i> | <ul> <li>Type, reference name/number, location<br/>and ownership including agreements or<br/>material issues with third parties such as<br/>joint ventures, partnerships, overriding<br/>royalties, native title interests, historical<br/>sites, wilderness or national park and<br/>environmental settings.</li> <li>The security of the tenure held at the<br/>time of reporting along with any known<br/>impediments to obtaining a licence to<br/>operate in the area.</li> </ul> | The project comprises two<br>Exploitation Permits (Permis<br>d'Exploitation), PE5046 and PE5049.<br>These are owned by a joint venture<br>company Giro Goldfields sarl formed<br>between Amani Consulting sarl (65%)<br>and Société Minière de Kilo-Moto sa<br>(SOKIMO) (35%), both DRC<br>registered entities. Amani Gold holds<br>85% of Amani Consulting. Tenure is in<br>good standing. |
| Exploration<br>done by other<br>parties                    | • Acknowledgment and appraisal of exploration by other parties                                                                                                                                                                                                                                                                                                                                                                                                                         | The licensed area has not been<br>systematically explored since the end<br>of Belgian colonial rule in 1960. Two<br>field visits were conducted in the area,<br>the first in 2010 by the "Office des<br>Mines d'or de Kilo-Moto" (OKIMO),<br>and the second in December 2011 by<br>Universal Consulting SPRL, working<br>for Amani.                                                         |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Following a review of historical and<br>previous exploration data, Panex<br>Resources Inc. conducted a first RC<br>drilling campaign at the Giro prospect<br>between December 2013 and                                                                                                                                                                                                      |



| CRITERIA                  | JORC Code Explanation                                                                                                                                                                                                                                            | Comment                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                                                                                                                                                                                                                                                                  | February 2014, completing 57 holes for 2,888m.                                                                                                                                                                                                                                                                                                                                                                         |
| Geology                   | • Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                  | The geological setting is comprised<br>mostly of volcano-sedimentary rocks<br>from the Kibalian complex, with<br>multiple granites and granitoid<br>intrusions. A network of faults seems<br>to have been reactivated at different<br>intervals.                                                                                                                                                                       |
|                           |                                                                                                                                                                                                                                                                  | Kebigada                                                                                                                                                                                                                                                                                                                                                                                                               |
|                           |                                                                                                                                                                                                                                                                  | On the Giro prospect, the main<br>lithologies hosting the mineralisation<br>are saprolite, quartz veins and<br>stringers and silicified volcano-<br>sediments. Mineralisation is<br>associated with quartz veining and<br>silicification of host rocks along a<br>major NW trending shear zone.<br>Generally higher gold grades are<br>associated with greater percentages<br>of sulphide (pyrite) and silicification. |
| Drill hole<br>Information | • A summary of all information material to<br>the understanding of the exploration<br>results including a tabulation of the                                                                                                                                      | Drill hole collar data and main intervals are shown in Table 1.                                                                                                                                                                                                                                                                                                                                                        |
|                           | following information for all Material drill<br>holes:                                                                                                                                                                                                           | Elevation data was recorded using a                                                                                                                                                                                                                                                                                                                                                                                    |
|                           | o <i>easting and northing of the drill hole collar</i>                                                                                                                                                                                                           | Garmin handheld GPS. Once the initial<br>programme has been completed all<br>drill hole collars will be surveyed with                                                                                                                                                                                                                                                                                                  |
|                           | o elevation or RL (Reduced Level –<br>elevation above sea level in                                                                                                                                                                                               | a DGPS to accurately establish position and elevation.                                                                                                                                                                                                                                                                                                                                                                 |
|                           | metres) of the drill hole collar                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           | o dip and azimuth of the hole                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           | o down hole length and interception<br>depth                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           | o hole length.                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           | • If the exclusion of this information is<br>justified on the basis that the information<br>is not Material and this exclusion does not<br>detract from the understanding of the<br>report, the Competent Person should<br>clearly explain why this is the case. |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Data                      | • In reporting Exploration Results,                                                                                                                                                                                                                              | RC - Kebigada                                                                                                                                                                                                                                                                                                                                                                                                          |
| aggregation<br>methods    | <i>weighting averaging techniques,<br/>maximum and/or minimum grade<br/>truncations (eg cutting of high grades)</i>                                                                                                                                              | Each sample represented 1m of RC drilling.                                                                                                                                                                                                                                                                                                                                                                             |



| CRITERIA                                | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                | Comment                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | and cut-off grades are usually Material<br>and should be stated.<br>• Where aggregate intercepts incorporate<br>short lengths of high grade results and<br>longer lengths of low grade results, the<br>procedure used for such aggregation<br>should be stated and some typical<br>examples of such aggregations should be<br>shown in detail.                                                       | To calculate assay intervals, a cut-off grade of 0.5g/t Au was used, with a maximum dilution of 3m at <0.5g/t Au.                                                                                                                                                                                         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                      | The results were weighted by length to calculate mean grades over sample intervals.                                                                                                                                                                                                                       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                      | Diamond — Kebigada                                                                                                                                                                                                                                                                                        |
|                                         | • The assumptions used for any reporting<br>of metal equivalent values should be<br>clearly stated.                                                                                                                                                                                                                                                                                                  | Each sample generally represented<br>1m of diamond drilling however<br>lithological and structural contacts are<br>taken in consideration and intervals<br>adjusted accordingly.                                                                                                                          |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                      | To calculate assay intervals, a cut-off grade of 0.5g/t Au was used, with a maximum dilution of 3m at <0.5g/t Au.                                                                                                                                                                                         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                      | The results were weighted by length<br>to calculate mean grades over sample<br>intervals.                                                                                                                                                                                                                 |
| Relationship                            | These relationships are particularly                                                                                                                                                                                                                                                                                                                                                                 | RC — Kebigada                                                                                                                                                                                                                                                                                             |
| between<br>mineralisation<br>widths and | <ul> <li>important in the reporting of Exploration<br/>Results.</li> <li>If the geometry of the mineralisation<br/>with respect to the drill hole angle is<br/>known, its nature should be reported.</li> <li>If it is not known and only the down<br/>hole lengths are reported, there should be<br/>a clear statement to this effect (eg 'down<br/>hole length, true width not known').</li> </ul> | All drill holes were inclined at -60° from horizontal                                                                                                                                                                                                                                                     |
| intercept<br>lengths                    |                                                                                                                                                                                                                                                                                                                                                                                                      | Generally drilling is perpendicular to<br>the strike and dip of the mineralised<br>zones. Down hole lengths are reported                                                                                                                                                                                  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                      | since difficulty in determining true widths from RC drilling.                                                                                                                                                                                                                                             |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                      | Diamond – Kebigada                                                                                                                                                                                                                                                                                        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                      | The drill holes were drilled with dips of -50° and -60° generally at -55°                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                      | Drilling has indicated that the drill<br>holes were drilled normal to the<br>foliation but structural logging<br>suggests mineralisation is associated<br>with multiple structural orientations<br>which makes it difficult to ascertain<br>the true structural orientation<br>controlling mineralisation |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                      | True widths could not be determined<br>as dip of mineralisation is still not clear<br>with limited overlap in drill holes but is<br>estimated to be 80-85% when using<br>the dip of the regional foliation.                                                                                               |



| CRITERIA                                          | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                | Comment                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diagrams                                          | • Appropriate maps and sections (with<br>scales) and tabulations of intercepts<br>should be included for any significant<br>discovery being reported These should<br>include, but not be limited to a plan view<br>of drill hole collar locations and<br>appropriate sectional views.                                                                                                                                                                                | Figure 1 shows the drill collar positions, Figures 2-4 are cross sections of lines with reported results.<br>All mineralised intervals are reported in Table 1.                                                                                                                                                                                                                                                        |
| Balanced<br>reporting                             | • Where comprehensive reporting of all<br>Exploration Results is not practicable,<br>representative reporting of both low and<br>high grades and/or widths should be<br>practiced to avoid misleading reporting of<br>Exploration Results.                                                                                                                                                                                                                           | Drill holes drilled in the completed<br>program are shown in Figures 1 - 4 for<br>all the results received Kebigada which<br>are reported in Table 1, according to<br>the data aggregation method<br>described previously. All high grade<br>intercepts are reported as included<br>intervals.                                                                                                                         |
| <i>Other<br/>substantive<br/>exploration data</i> | <ul> <li>Other exploration data, if meaningful<br/>and material, should be reported<br/>including (but not limited to): geological<br/>observations; geophysical survey results;<br/>geochemical survey results; bulk samples         <ul> <li>size and method of treatment;<br/>metallurgical test results; bulk density,<br/>groundwater, geotechnical and rock<br/>characteristics; potential deleterious or<br/>contaminating substances.</li> </ul> </li> </ul> | Regional and infill soil sampling and<br>geological mapping and sampling is<br>ongoing on mining licences PE 5046<br>and 5049, with infill soil sampling<br>ongoing where significant soil<br>anomalies have been previously<br>identified in the regional soil sampling<br>programme.                                                                                                                                 |
| Further work                                      | <ul> <li>The nature and scale of planned further<br/>work (eg tests for lateral extensions or<br/>depth extensions or large-scale step-out<br/>drilling).</li> <li>Diagrams clearly highlighting the areas<br/>of possible extensions, including the main<br/>geological interpretations and future<br/>drilling areas, provided this information is<br/>not commercially sensitive.</li> </ul>                                                                      | Kebigada results are being assessed<br>on an ongoing basis and additional<br>holes planned and drilled when<br>deemed necessary.<br>Regional soil sampling programmes,<br>including mapping and channel<br>sampling of all exposures are currently<br>underway in areas not yet sampled<br>and infill sampling in areas where<br>anomalous gold was identified<br>previously on both licences (PE's 5046<br>and 5049). |